నైరూప్య

Study of RLT-enhanced and lifted formulations for the job-shop scheduling problem

Yonghui Cao


In this paper, we propose novel continuous nonconvex as well as lifted discrete formulations of the notoriously challenging class of job-shop scheduling problems with the objective of minimizing the maximum completion time. In particular, we develop an RLT-enhanced continuous nonconvex model for the job-shop problem based on a quadratic formulation of the job sequencing constraints on machines. The tight linear programming relaxation that is induced by this formulation is then embedded in a globally convergent branch-and-bound algorithm. Furthermore, we design another novel formulation for the job-shop scheduling problem that possesses a tight continuous relaxation, where the non-overlapping job sequencing constraints onmachines are modeled via a lifted asymmetric traveling salesman problem(ATSP) construct, and specific sets of valid inequalities and RLT-based enhancements are incorporated to further tighten the resulting mathematical program.


నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు

ఇండెక్స్ చేయబడింది

  • CASS
  • గూగుల్ స్కాలర్
  • J గేట్ తెరవండి
  • చైనా నేషనల్ నాలెడ్జ్ ఇన్‌ఫ్రాస్ట్రక్చర్ (CNKI)
  • CiteFactor
  • కాస్మోస్ IF
  • ఎలక్ట్రానిక్ జర్నల్స్ లైబ్రరీ
  • రీసెర్చ్ జర్నల్ ఇండెక్సింగ్ డైరెక్టరీ (DRJI)
  • రహస్య శోధన ఇంజిన్ ల్యాబ్‌లు
  • ICMJE

మరిన్ని చూడండి

జర్నల్ హెచ్-ఇండెక్స్

Flyer