నైరూప్య

Cascade Radical Reactions via the Formation of Carbon-Carbon/Heteroatom Bonds

Timothy Wilson *


To build radical chemistry-based cascade events for forming carbon-carbon and carbon heteroatom bonds. The radical and anionic carbon-carbon bond-forming procedure produced,-disubstituted amino acids via the diethylzinc-promoted reaction of dehydroamino acid derivatives with acid anhydride or-allyl palladium complex. Using Bu3SnH and Pd (PPh3)4, this reaction was effectively developed into the reductive transformation of N-phthaloyl dehydroalanine. Using hydroxamate ester functionality as a chiral Lewis acid-coordinating tether between two radical acceptors, the chiral Lewis acid-mediated cascade radical addition-cyclization-trapping reaction went smoothly with good enantioselectivities. This approach was used in a cascade reaction involving the addition of electrophilic perfluoroalkyl radicals to electron-deficient acceptors with adverse polarity mismatch. In addition, a cascade sequence was observed that was terminated by radical-radical coupling. Cascade process strategies have the benefit of forming many carbon-carbon and/or carbon-heteroatom bonds in a single operation. In organic synthesis, radical chemistry has been developed as one of the most powerful strategies for forming carbon-carbon bonds.


ఇండెక్స్ చేయబడింది

  • CASS
  • గూగుల్ స్కాలర్
  • J గేట్ తెరవండి
  • చైనా నేషనల్ నాలెడ్జ్ ఇన్‌ఫ్రాస్ట్రక్చర్ (CNKI)
  • CiteFactor
  • కాస్మోస్ IF
  • ఎలక్ట్రానిక్ జర్నల్స్ లైబ్రరీ
  • రీసెర్చ్ జర్నల్ ఇండెక్సింగ్ డైరెక్టరీ (DRJI)
  • రహస్య శోధన ఇంజిన్ ల్యాబ్‌లు
  • ICMJE

మరిన్ని చూడండి

జర్నల్ హెచ్-ఇండెక్స్

Flyer